Module # 3 assignment
Module # 3 assignment
# Data sets
set1 <- c(10, 2, 3, 2, 4, 2, 5)
set2 <- c(20, 12, 13, 12, 14, 12, 15)
# Central Tendency
mean_set1 <- mean(set1)
median_set1 <- median(set1)
mode_set1 <- as.numeric(names(sort(-table(set1)))[1]) # Mode
mean_set2 <- mean(set2)
median_set2 <- median(set2)
mode_set2 <- as.numeric(names(sort(-table(set2)))[1]) # Mode
# Variation
range_set1 <- range(set1)
iqr_set1 <- IQR(set1)
variance_set1 <- var(set1)
std_dev_set1 <- sd(set1)
range_set2 <- range(set2)
iqr_set2 <- IQR(set2)
variance_set2 <- var(set2)
std_dev_set2 <- sd(set2)
# Output
cat("Set 1\n")
cat("Mean:", mean_set1, "\n")
cat("Median:", median_set1, "\n")
cat("Mode:", mode_set1, "\n")
cat("Range:", diff(range_set1), "\n")
cat("IQR:", iqr_set1, "\n")
cat("Variance:", variance_set1, "\n")
cat("Standard Deviation:", std_dev_set1, "\n\n")
cat("Set 2\n")
cat("Mean:", mean_set2, "\n")
cat("Median:", median_set2, "\n")
cat("Mode:", mode_set2, "\n")
cat("Range:", diff(range_set2), "\n")
cat("IQR:", iqr_set2, "\n")
cat("Variance:", variance_set2, "\n")
cat("Standard Deviation:", std_dev_set2, "\n")
Output
> cat("Set 1\n")
Set 1
> cat("Mean:", mean_set1, "\n")
Mean: 4
> cat("Median:", median_set1, "\n")
Median: 3
> cat("Mode:", mode_set1, "\n")
Mode: 2
> cat("Range:", diff(range_set1), "\n")
Range: 8
> cat("IQR:", iqr_set1, "\n")
IQR: 2.5
> cat("Variance:", variance_set1, "\n")
Variance: 8.333333
> cat("Standard Deviation:", std_dev_set1, "\n\n")
Standard Deviation: 2.886751
>
> cat("Set 2\n")
Set 2
> cat("Mean:", mean_set2, "\n")
Mean: 14
> cat("Median:", median_set2, "\n")
Median: 13
> cat("Mode:", mode_set2, "\n")
Mode: 12
> cat("Range:", diff(range_set2), "\n")
Range: 8
> cat("IQR:", iqr_set2, "\n")
IQR: 2.5
> cat("Variance:", variance_set2, "\n")
Variance: 8.333333
> cat("Standard Deviation:", std_dev_set2, "\n")
Standard Deviation: 2.886751
> Set 1 has lower values around 4, while Set 2 centers around 14. Set 2's larger values, both sets have identical variability, with the same interquartile range, variance, and standard deviation. This shows that the values differ, but the spread and distribution are the same.
Comments
Post a Comment